Su sobrerregulación en tejidos tumorales permite clasificar muchos de ellos como oncochannels, elementos clave en la biología del cáncer.
Dentro del enfoque de terapias naturales con base científica, las toxinas escorpiónicas han captado la atención de investigadores y médicos.
Un caso particular de esta línea de estudio es el compuesto Escozul, derivado del veneno del escorpión endémico de Cuba, ampliamente difundido en Colombia.
En este artículo académico, exploraremos en profundidad cómo actúan los canales iónicos Na⁺/K⁺ en distintos tipos de cáncer.
También abordaremos los mecanismos moleculares mediante los cuales las toxinas escorpiónicas pueden bloquear o alterar la función de estos canales.
Dedicaremos una sección al análisis del compuesto Escozul, su relación con los mecanismos aquí descritos y su posicionamiento en el contexto colombiano.
El cierre del documento ofrecerá una síntesis académica útil para profesionales de la salud interesados en terapias moleculares emergentes.
Alteraciones en oncochannels tumorales en procesos malignos:estudio detallado en tumores de alto impacto bajo revisión científica
Se denomina oncochannels a aquellos canales voltaje-dependientes cuya expresión o actividad se ve alterada significativamente en células cancerosas, contribuyendo a su progresión.
Su actividad aberrante les permite favorecer entornos tumorales más agresivos, con capacidad aumentada de metástasis y angiogénesis.
Estos oncochannels han sido mapeados en tejidos neoplásicos humanos, evidenciando su contribución a la biología tumoral en múltiples órganos.
Cáncer de mama
Nav1.5 regula procesos como la migración a través de la matriz extracelular y ha sido propuesto como marcador de mal pronóstico.
Este tipo de canal iónico representa un blanco molecular potencial para estrategias terapéuticas basadas en toxinas bioactivas, como las presentes en el veneno de *Rhopalurus junceus*.
Cáncer de colon
En cáncer de colon, se ha documentado la participación de canales de potasio como Kv1.3, cuya actividad influye en el ciclo celular y en la proliferación celular tumoral.
La modulación de estos canales por toxinas naturales podría representar un enfoque no convencional de tratamiento que encaje con formulaciones como Escozul, especialmente cuando se considera su base molecular y su capacidad para inducir apoptosis selectiva en células de colon humano.
Cáncer de próstata
Estudios han mostrado que hERG1 se expresa en fases tempranas del cáncer prostático, constituyéndose como un blanco útil tanto para diagnóstico como para terapia dirigida.
Teniendo en cuenta que Escozul ha sido empleado por pacientes con cáncer de próstata en Colombia, el estudio de su interacción con canales tipo hERG1 podría abrir nuevas hipótesis clínicas.
Glioblastoma
Kv10.1, en particular, se expresa casi exclusivamente en células tumorales, lo que lo convierte en un blanco altamente específico.
Estos hallazgos motivan una evaluación más rigurosa del papel de compuestos como Escozul en tumores cerebrales, dado su origen bioactivo y la creciente evidencia de su afinidad por estructuras celulares alteradas.
Componentes activos del veneno de escorpión y su impacto en células tumorales: análisis de sus mecanismos y potencial farmacológico
Las toxinas extraídas del veneno de escorpión contienen estructuras peptídicas altamente específicas que interactúan con canales iónicos celulares.
Al interferir con la bioelectricidad celular, estas toxinas alteran rutas críticas asociadas a la progresión tumoral.
Clorotoxina (CTX)
Clorotoxina, extraída del escorpión amarillo de Israel, ha sido ampliamente documentada en su efecto sobre tumores cerebrales.
Además, la CTX ha sido vinculada al cierre de rutas de señalización pro-metastásicas, representando una diana farmacológica de alto valor.
Estas propiedades inspiran el análisis de toxinas similares presentes en Escozul, dada la afinidad compartida por blancos iónicos alterados en tumores agresivos.
BmK CT (del escorpión *Buthus martensii karsh*)
Otro péptido bioactivo relevante es BmK CT, aislado del escorpión chino *Buthus martensii karsh*, ampliamente utilizado en la medicina tradicional asiática.
Este tipo de efecto combinatorio es especialmente atractivo para compuestos como Escozul, cuyo mecanismo antitumoral también involucra la inducción de apoptosis y regulación de marcadores como Ki-67 y CD31.
Si bien no se ha identificado BmK CT en *Rhopalurus junceus*, la literatura científica sugiere que toxinas de estructura análoga podrían estar presentes y justificar el perfil bioactivo observado en estudios preclínicos con Escozul.
Otras toxinas con relevancia terapéutica
Diversos péptidos aislados de especies como *Heterometrus bengalensis* o *Androctonus australis* han sido evaluados con resultados positivos en modelos de leucemia, melanoma Aprenda aquí y carcinoma de próstata.
Su selectividad sobre células malignas sin afectar tejidos normales las convierte en candidatas ideales para el desarrollo de terapias dirigidas.
Relación con Escozul
Los estudios in vitro con Escozul sobre células humanas de cáncer de mama, pulmón, colon y próstata han evidenciado inhibición del crecimiento celular y activación de mecanismos apoptóticos.
Dado su origen natural y el hecho de que muchos colombianos acceden a Escozul como terapia complementaria, es fundamental entender las bases moleculares que podrían sustentar su acción.
El compuesto Escozul:vínculos con los canales iónicos voltaje-dependientes en cáncer
En Colombia, Escozul ha sido objeto de creciente interés debido a su origen bioactivo y a los informes que lo asocian con la inhibición del crecimiento tumoral.
Aunque Escozul no se comercializa como medicamento, su uso bajo acompañamiento médico ha sido validado por protocolos clínicos no convencionales en Cuba y observado por instituciones colombianas.
Estudios previos han demostrado que el veneno de *Rhopalurus junceus* regula genes como *p53*, *bax*, *bcl-2* y *caspasa 3*, todos vinculados a mecanismos de muerte celular que involucran potenciales alteraciones iónicas.
Dada esta similitud funcional, la hipótesis de que Escozul ejerce parte de su acción mediante la inhibición o modulación de oncochannels resulta científicamente plausible.
Cánceres como el de mama (con sobreexpresión de Nav1.5), próstata (hERG1) o glioblastoma (Kv10.1) son objetivos potenciales para terapias dirigidas a canales iónicos, lo que da fundamento al uso estratégico de Escozul como parte de un enfoque terapéutico integral.
Aunque estos datos son de carácter observacional, respaldan la necesidad de más estudios clínicos sobre Escozul desde una perspectiva biomédica avanzada.
Colombia representa un terreno fértil para investigar la acción de Escozul desde un enfoque farmacológico riguroso, especialmente considerando su disponibilidad y demanda creciente.
De validarse formalmente su interacción con oncochannels, Escozul podría posicionarse como una herramienta terapéutica de bajo costo con impacto en la atención oncológica del país.
Síntesis crítica y proyección investigativa: el futuro de las toxinas escorpiónicas y los canales iónicos en la oncología colombiana
La revisión ha demostrado que los canales voltaje-dependientes no son meros participantes pasivos, sino actores funcionales en la fisiopatología de diversos tumores sólidos y hematológicos.
El vínculo entre moléculas escorpiónicas y la regulación de oncochannels se presenta como una intersección prometedora entre farmacología molecular, biotecnología y oncología traslacional.
Dado su uso frecuente en Colombia y el interés popular que genera, su estudio podría facilitar puentes entre medicina natural, farmacología académica y políticas de salud pública.
Para los centros de investigación, universidades y laboratorios colombianos, explorar el mecanismo de acción de Escozul a nivel de canalopatías oncológicas no solo sería un avance científico, sino también una contribución estratégica al acceso a terapias complementarias seguras, eficaces y accesibles.
Este enfoque también permitiría desarrollar variantes estandarizadas del compuesto, cumpliendo criterios internacionales de control de calidad, algo clave para su futura regulación sanitaria y su posible inclusión como coadyuvante oncológico en planes de atención integral.
Estas acciones no solo aportarían evidencia necesaria sobre Escozul, sino que también posicionarían a Colombia como referente en la investigación de biotoxinas terapéuticas.
En última instancia, integrar las toxinas escorpiónicas dentro del arsenal terapéutico del cáncer, a partir de una validación rigurosa y contextualizada, puede ofrecer a los pacientes nuevas oportunidades de tratamiento, seguras y basadas en ciencia sólida.
Referencias
Díaz-García, A., Ruiz-Fuentes, J. L., Frión-Herrera, Y., Yglesias-Rivera, A., Riquenez Garlobo, Y., Rodríguez Sánchez, H., Rodríguez Aurrecochea, J. C., & López Fuentes, L. X. (2019). Rhopalurus junceus scorpion venom induces antitumor effect in vitro and in vivo against a murine mammary adenocarcinoma model. Iranian Journal of Basic Medical Sciences, 22(7), 759–765. https://doi.org/10.22038/ijbms.2019.33308.7956
Gámez-Valero, A., Campoy, I., Sánchez, A., & Beyer, K. (2020). Voltage‑Gated K+/Na+ Channels and Scorpion Venom Toxins in Cancer. Frontiers in Pharmacology, 11, 913. https://doi.org/10.3389/fphar.2020.00913
Gao, F., Li, H., Chen, Y., Yu, X., Wang, R., & Chen, X. (2009). Upregulation of PTEN involved in scorpion venom-induced apoptosis in a lymphoma cell line. Leukemia & Lymphoma, 50(4), 633–641. https://doi.org/10.1080/10428190902726789
Ding, J., Chua, P. J., Bay, B. H., & Gopalakrishnakone, P. (2014). Scorpion venoms as a potential source of novel cancer therapeutic compounds. Experimental Biology and Medicine, 239(4), 387–393. https://doi.org/10.1177/1535370214526223
D’Suze, G., Rosales, A., Salazar, V., & Sevcik, C. (2010). Apoptogenic peptides from Tytius discrepans scorpion venom acting against SKBR3 breast cancer cell line. Toxicon, 56(8), 1495–1505. https://doi.org/10.1016/j.toxicon.2010.07.010
Ortiz, E., Gurrola, G. B., Schwartz, E. F., & Possani, L. D. (2015). Scorpion venom components as potential candidates for drug development. Toxicon, 93, 125–135. https://doi.org/10.1016/j.toxicon.2014.11.233
Hmed, B., Serria, H., & Mounir, Z. (2013). Scorpion peptides: potential use for new drug development. Journal of Toxicology, 2013, 958797. https://doi.org/10.1155/2013/958797
Cohen-Inbar, O., & Zaaroor, M. (2016). Glioblastoma multiforme targeted therapy: The chlorotoxin story. Journal of Clinical Neuroscience, 33, 52–58. https://doi.org/10.1016/j.jocn.2016.04.007
Zargan, J., Sajad, M., Umar, S., Naime, M., Ali, S., & Khan, H. A. (2011). Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Molecular and Cellular Biochemistry, 348(1–2), 173–181. https://doi.org/10.1007/s11010-010-0646-8
Sun, N., Zhao, L., Qiao, W., Xing, Y., & Zhao, J. (2017). BmK CT and 125I-BmK CT suppress the invasion of glioma cells in vitro via matrix metalloproteinase-2. Molecular Medicine Reports, 15(4), 2703–2708. https://doi.org/10.3892/mmr.2017.6346